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Better, faster, smarter

Python: yesterday, today... and tomorrow
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Outline of this talk
a short reflection on Python evolution

2.2 -> 2.3 -> 2.4 -> ...
... -> highlights of Python 2.5

the “with” statement (RAII)
other language changes
additions to the standard library
optimizations

Q & A
Qs are also welcome during the talk!-)
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1 lang, many versions
Jython (pending 2.2/2.3 release)
IronPython (1.0, 8/06, Microsoft ~ CPython 2.4)
pypy (0.9, 6/06 ~ CPython 2.4, but “beta”)
CPython (Classic Python) timeline

2.2: 12/01 (...2.2.3: 5/03) major new stuff
2.3: 7/03 (...2.3.5: 2/05) ~30% faster
2.4: 11/04 (...2.4.4: 9/06) ~5% faster yet
2.5: 9/06 (...?) ~10% (?) faster yet
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The 2.2 “revolution”
2.2 was a “backwards-compatible” revolution

new-style object model, descriptors, 
custom metaclasses...
iterators and generators
nested scopes
int/long merge, new division, bool (2.2.3)
standard library: XML/RPC (clients and 
servers), IPv6 support, email, UCS-4, ...

nothing THAT big since, plus, new rule:
2.N.* has NO extra features wrt 2.N
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2.2 highlights
class Newy(object): ...
__metaclass__ = ...

def funmaker(...):
  def madefun(...): ...
  return madefun

def gen1(item):
  yield item

for item in iter(f, sentinel): ...
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2.3: stable evolution
no changes to the language “proper”
many, MANY optimizations/tweaks/fixes

import-from-ZIP, ever-more-amazing 
sort, Karatsuba multiplication, pymalloc, 
interned strs gc’able ...

builtins: sum, enumerate, extended slices, 
enhancements to str, dict, list, file, ...
stdlib, many new modules: bz2, csv, 
datetime, heapq, itertools, logging, optparse, 
platform, sets, tarfile, textwrap, timeit

& many enhancements: socket timeouts, ...

7
7



2.3 highlights
sys.path.append(‘some.zip’)

sum([x**2 for x in xs if x%2])

for i, x in enumerate(xs): ...

print ‘ciao’[::-1]

for line in open(fn, ‘U’): ...

...and MANY new stdlib modules...!
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2.4: mostly evolution
“small” new language features:

genexps, decorators
many “peephole-level” optimizations

builtins: sorted, reversed; enhancements to 
sort, str; set becomes built-in
stdlib, new modules: collections, cookielib, 
decimal, subprocess

string.Template, faster bisect & heapq, 
operator itemgetter & attrgetter, 
os.urandom, threading.local, ...
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2.4 language changes
sum(x**2 for x in xs if x%2)
like sum([x**2 for x in xs if x%2])
(without actually building the list!)

class Foo(object):
  @classmethod
  def bar(cls): return cls.__name__
print Foo().bar(), Foo.bar()
emits: Foo Foo
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2.4 new built-ins
for item in sorted(sequence): ...
(does not alter sequence in-place!)

for item in reversed(sequence): ...
(does not alter sequence in-place; like...
for item in sequence[::-1]: ...
...but, more readable!-)

set and frozenzet become built-in types
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2.4 built-ins additions
print ‘foo’.center(7, ‘+’)
emits: ++foo++

print ‘foo+bar+baz’.rsplit(‘+’,1)[-1]
emits: baz

print sorted(‘abc d ef g’.split(), key=len)
emits: [‘d’, ‘g’, ‘ef’, ‘abc’]
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2.4 new stdlib modules
collections.deque
double-ended queue -- methods: append, 
appendleft, extend, extendleft, pop, 
popleft, rotate

decimal.Decimal
specified-precision decimal floating point 
number, IEEE-754 compliant

subprocess.Popen
spawn and control a sub-process
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2.4 stdlib additions
list2d.sort(key=operator.itemgetter(1))

os.urandom(n) -> n crypto-strong byte str

threading.local() -> TLS (attrs bundle)

heapq.nlargest(n, sequence)
also .nsmallest (whole module much faster)
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2.5: evolution... plus!
several language changes:

full support for “RAII”-style programming
new “with” statement, new contextlib 
module, generator enhancements...

absolute/relative imports, unified “try/
except/finally” statement, “if/else” 
operator, exceptions are new-style

new builtins: any/all, dict.__missing__
new stdlib modules: ctypes, xml.etree, 
functools, hashlib, sqlite3, wsgiref, ...
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2.5: many optimizations
sets/frozensets recoded from scratch
many speed-ups to string operations
substantial speed-ups in struct
new-style exceptions are faster
and many minor optimization tweaks

smaller and phantom frames in calls
re uses Python allocator
some constant-folding at compile time
fewer system calls during importing
...
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Resource Allocation Is Initialization
# in 2.4 and earlier, Java-like...:
resource = ...allocate it...
try:
  ...use the resource...
finally:
  ...free the resource...

# in 2.5, much “slimmer”...:
with ...allocate it... as resource:
  ...use the resource...
with automatic “freeing” at block exit!
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Many “with”-ready types
with open(filename) as f:
   ...work with file f...
# auto f.close() on block exit

somelock = threading.Lock()

with somelock:
  # auto somelock.acquire() on block entry
  ...work guarded by somelock...
# auto somelock.release() on block exit
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The “with” statement
from __future__ import with_statement
with <expr> as var: <with-block>

# makes and uses a *context manager*
_context = <expr>
var = _context.__enter__()
try: <with-block>
except: _context.__exit__(*sys.exc_info())
else: _context.__exit__(None, None, None)

Better than C++: can distinguish exception 
exits from normal ones!
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Your own context mgrs
roll-your-own: write a wrapper class

usually __init__ for initialization
__enter__(self) returns useful “var”
__exit__(self, ext, exv, tbv) performs the 
needed termination operations (exit is 
“normal” iff args are all None)

extremely general
slightly clunky/boilerplatey
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“with” for transactions
class Transaction(object):
 def __init__(self, c): self.c = c
 def __enter__(self): return self.c.cursor()
 def __exit__(self, ext, exv, tbv):
   if ext is None: self.c.commit()
   else: self.c.rollback()

with Transaction(connection) as cursor:
   cursor.execute(...)
   ...and more processing as needed...
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Your own context mgrs
contextlib module can help in many ways
decorator contextlib.contextmanager lets 
you write a context mgr as a generator

yield the desired result of __enter__
within a try/finally or try/except/else
re-raise exception in try/except case

function contextlib.nested “nests” context 
managers without needing special syntax
function contextlib.closing(x) just returns x 
and calls x.close() at block exit 
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Transaction w/contextlib
import contextlib

@contextlib.contextmanager
def Transaction(c):
  cursor = c.cursor()
  try: yield cursor
  except:
    c.rollback()
    raise
  else:
    c.commit()
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Other uses of contextlib
# syntax-free “nesting”
# e.g., a locked transaction:
with contextlib.nested(thelock,
  Transaction(c)) as (locked, cursor): ...
# auto commit or rollback, AND auto
# thelock.release, on block exit

# when all you need is closing, e.g:
with contextlib.closing(
         urllib.urlopen(...)) as f:
  ...work with pseudo-file object f...
# auto f.close() on block exit
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Generator enhancements
yield can be inside a try-clause
yield is now an expression

x = g.send(value) gives yield’s value
x = g.next() is like x = g.send(None)
preferred syntax: value = (yield result)

g.throw(type [,value [,traceback]])
g.close() is like g.throw(GeneratorExit)

automatic g.close() when g is garbage-
collected

this is what ensures try/finally works!
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Absolute/relative imports
from __future__ import absolute_import

means: import X finds X in sys.path
you can import .X to find X in the 
current package
also import ..X to find X in the 
package containing the current one, etc

important “future” simplification of imports
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try/except/finally
try: <body>
except <spec>: <handler>
else: <ebody>  # else-clause is optional
finally: <finalizer>
becomes equivalent to:
try:
  try: <body>
  except <spec>: <handler>
  else: <ebody>
finally: <finalizer>
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if/else ternary operator
result = (whentrue if cond else whenfalse)
becomes equivalent to:
if cond:
  result = whentrue
else:
  result = whenfalse

the parentheses are technically optional (!)
meant to help with lambda & the like
somewhat-controversial syntax...:-)
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Exceptions are new-style
BaseException
    KeyboardInterrupt
    Exception
        GeneratorExit
        StandardError
            ArithmeticError
            EnvironmentError
            LookupError
            # other “true” error classes
        StopIteration
        SystemExit
        Warning
    SystemExit
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any and all
def any(seq):
  for item in seq:
    if item: return True
  return False

def all(seq):
  for item in seq:
    if not item: return False
  return True

note: RIGHT behavior for empty sequence!
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dict.__missing__
hook method called by __setitem__ if the 
key is missing (==not in the dict)
default implementation in dict itself:

def __missing__(self, key):
  raise KeyError(key)

meant to be overridden by subclasses
collections.defaultdict subclasses dict:

def __missing__(self, key):
  return self.default_factory()

default_factory optionally set at 
__init__ (default None == raise)
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ctypes
load any shared library / DLL with 
ctypes.CDLL(<complete name of library>)
call any function as a method of the CDLL
automatically converts to int and char*
other conversions explicit with c_int, 
c_float, create_string_buffer, ...
also accesses Python’s C API
essentially: a general-purpose Python FFI !
dangerous: any programer mistake or 
oversight can easily crash Python!

32
32



Element-Tree
new package xml.etree with modules 
ElementTree, ElementPath, ElementInclude
highly Pythonic in-memory representation 
of XML document as tree, much slimmer 
(and faster!) than the DOM
each XML element is a bit like a list of its 
children merged with a dict of its attrs
scalable to large documents with included C 
accelerators and .iterparse incremental 
parsing (a bit like pulldom, but simpler, and 
keeps subtrees by default)
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functools
functools.partial for “partial 
application” (AKA “currying”)
functools.update_wrapper for proper 
setting of metadata for functions that wrap 
other functions
functools.wraps: decorator equivalent of 
functools.update_wrapper
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hashlib
replaces md5 and sha modules (which 
become wrappers to it!)
adds SHA-224, SHA-256, SHA-384, SHA-512
optionally uses OpenSSL as accelerator (but 
can be pure-Python if necessary!)
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sqlite3
wrapper for the SQLite embedded DB
DB-API-2 compliant interface

except that SQLite is “typeless” (!)
some extensions: optional timeout on 
connect, isolation level, detect_type and 
type converters, executemany on 
iterators, executescript method, ...

great way to “get started” on small app, 
can later migrate to PostgreSQL or other 
relational DB (MySQL, Oracle, whatever)
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wsgiref
Web Server Gateway Interface
standard “middleware” interface between 
HTTP servers and Python web frameworks

goal: any framework, any server
non-goal: direct use by web applications!
already widely supported by frameworks
http://www.wsgi.org/wsgi for more!

stdlib now includes a “reference 
implementation” of WSGI (wsgiref)

includes basic HTTP server for debugging 
WSGI applications and interfaces
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