
©2006 Alex Martelli aleax@google.com

Better, faster, smarter

Python: yesterday, today... and tomorrow

1

mailto:aleaxit@gmail.com
mailto:aleaxit@gmail.com

Outline of this talk
a short reflection on Python evolution

2.2 -> 2.3 -> 2.4 -> ...
... -> highlights of Python 2.5

the “with” statement (RAII)
other language changes
additions to the standard library
optimizations

Q & A
Qs are also welcome during the talk!-)

2
2

1 lang, many versions
Jython (pending 2.2/2.3 release)
IronPython (1.0, 8/06, Microsoft ~ CPython 2.4)
pypy (0.9, 6/06 ~ CPython 2.4, but “beta”)
CPython (Classic Python) timeline

2.2: 12/01 (...2.2.3: 5/03) major new stuff
2.3: 7/03 (...2.3.5: 2/05) ~30% faster
2.4: 11/04 (...2.4.4: 9/06) ~5% faster yet
2.5: 9/06 (...?) ~10% (?) faster yet

3
3

4

Apr 2002 Oct 2002 Apr 2003 Oct 2003 Apr 2004 Oct 2004 Apr 2005 Oct 2005 Apr 2006

Dec 2001
2.2

Apr 2002
2.2.1

Oct 2002
2.2.2

Mar 2003
2.2.3

Apr 2002 Oct 2002 Apr 2003 Oct 2003 Apr 2004 Oct 2004 Apr 2005 Oct 2005 Apr 2006

Jul 2003
2.3

Sep 2003
2.3.1

Oct 2003
2.3.2

Dec 2003
2.3.3

May 2004
2.3.4

Feb 2005
2.3.5

Apr 2002 Oct 2002 Apr 2003 Oct 2003 Apr 2004 Oct 2004 Apr 2005 Oct 2005 Apr 2006

Nov 2004
2.4

Mar 2005
2.4.1

Sep 2005
2.4.2

Mar 2006
2.4.3

Oct 2006
2.4.4

2.52.4

2.3

2.2

4

The 2.2 “revolution”
2.2 was a “backwards-compatible” revolution

new-style object model, descriptors,
custom metaclasses...
iterators and generators
nested scopes
int/long merge, new division, bool (2.2.3)
standard library: XML/RPC (clients and
servers), IPv6 support, email, UCS-4, ...

nothing THAT big since, plus, new rule:
2.N.* has NO extra features wrt 2.N

5
5

2.2 highlights
class Newy(object): ...
__metaclass__ = ...

def funmaker(...):
 def madefun(...): ...
 return madefun

def gen1(item):
 yield item

for item in iter(f, sentinel): ...

6
6

2.3: stable evolution
no changes to the language “proper”
many, MANY optimizations/tweaks/fixes

import-from-ZIP, ever-more-amazing
sort, Karatsuba multiplication, pymalloc,
interned strs gc’able ...

builtins: sum, enumerate, extended slices,
enhancements to str, dict, list, file, ...
stdlib, many new modules: bz2, csv,
datetime, heapq, itertools, logging, optparse,
platform, sets, tarfile, textwrap, timeit

& many enhancements: socket timeouts, ...

7
7

2.3 highlights
sys.path.append(‘some.zip’)

sum([x**2 for x in xs if x%2])

for i, x in enumerate(xs): ...

print ‘ciao’[::-1]

for line in open(fn, ‘U’): ...

...and MANY new stdlib modules...!

8
8

2.4: mostly evolution
“small” new language features:

genexps, decorators
many “peephole-level” optimizations

builtins: sorted, reversed; enhancements to
sort, str; set becomes built-in
stdlib, new modules: collections, cookielib,
decimal, subprocess

string.Template, faster bisect & heapq,
operator itemgetter & attrgetter,
os.urandom, threading.local, ...

9
9

2.4 language changes
sum(x**2 for x in xs if x%2)
like sum([x**2 for x in xs if x%2])
(without actually building the list!)

class Foo(object):
 @classmethod
 def bar(cls): return cls.__name__
print Foo().bar(), Foo.bar()
emits: Foo Foo

10
10

2.4 new built-ins
for item in sorted(sequence): ...
(does not alter sequence in-place!)

for item in reversed(sequence): ...
(does not alter sequence in-place; like...
for item in sequence[::-1]: ...
...but, more readable!-)

set and frozenzet become built-in types

11
11

2.4 built-ins additions
print ‘foo’.center(7, ‘+’)
emits: ++foo++

print ‘foo+bar+baz’.rsplit(‘+’,1)[-1]
emits: baz

print sorted(‘abc d ef g’.split(), key=len)
emits: [‘d’, ‘g’, ‘ef’, ‘abc’]

12
12

2.4 new stdlib modules
collections.deque
double-ended queue -- methods: append,
appendleft, extend, extendleft, pop,
popleft, rotate

decimal.Decimal
specified-precision decimal floating point
number, IEEE-754 compliant

subprocess.Popen
spawn and control a sub-process

13
13

2.4 stdlib additions
list2d.sort(key=operator.itemgetter(1))

os.urandom(n) -> n crypto-strong byte str

threading.local() -> TLS (attrs bundle)

heapq.nlargest(n, sequence)
also .nsmallest (whole module much faster)

14
14

2.5: evolution... plus!
several language changes:

full support for “RAII”-style programming
new “with” statement, new contextlib
module, generator enhancements...

absolute/relative imports, unified “try/
except/finally” statement, “if/else”
operator, exceptions are new-style

new builtins: any/all, dict.__missing__
new stdlib modules: ctypes, xml.etree,
functools, hashlib, sqlite3, wsgiref, ...

15
15

2.5: many optimizations
sets/frozensets recoded from scratch
many speed-ups to string operations
substantial speed-ups in struct
new-style exceptions are faster
and many minor optimization tweaks

smaller and phantom frames in calls
re uses Python allocator
some constant-folding at compile time
fewer system calls during importing
...

16
16

Resource Allocation Is Initialization
in 2.4 and earlier, Java-like...:
resource = ...allocate it...
try:
 ...use the resource...
finally:
 ...free the resource...

in 2.5, much “slimmer”...:
with ...allocate it... as resource:
 ...use the resource...
with automatic “freeing” at block exit!

17
17

Many “with”-ready types
with open(filename) as f:
 ...work with file f...
auto f.close() on block exit

somelock = threading.Lock()

with somelock:
 # auto somelock.acquire() on block entry
 ...work guarded by somelock...
auto somelock.release() on block exit

18
18

The “with” statement
from __future__ import with_statement
with <expr> as var: <with-block>

makes and uses a *context manager*
_context = <expr>
var = _context.__enter__()
try: <with-block>
except: _context.__exit__(*sys.exc_info())
else: _context.__exit__(None, None, None)

Better than C++: can distinguish exception
exits from normal ones!

19
19

Your own context mgrs
roll-your-own: write a wrapper class

usually __init__ for initialization
__enter__(self) returns useful “var”
__exit__(self, ext, exv, tbv) performs the
needed termination operations (exit is
“normal” iff args are all None)

extremely general
slightly clunky/boilerplatey

20
20

“with” for transactions
class Transaction(object):
 def __init__(self, c): self.c = c
 def __enter__(self): return self.c.cursor()
 def __exit__(self, ext, exv, tbv):
 if ext is None: self.c.commit()
 else: self.c.rollback()

with Transaction(connection) as cursor:
 cursor.execute(...)
 ...and more processing as needed...

21
21

Your own context mgrs
contextlib module can help in many ways
decorator contextlib.contextmanager lets
you write a context mgr as a generator

yield the desired result of __enter__
within a try/finally or try/except/else
re-raise exception in try/except case

function contextlib.nested “nests” context
managers without needing special syntax
function contextlib.closing(x) just returns x
and calls x.close() at block exit

22
22

Transaction w/contextlib
import contextlib

@contextlib.contextmanager
def Transaction(c):
 cursor = c.cursor()
 try: yield cursor
 except:
 c.rollback()
 raise
 else:
 c.commit()

23
23

Other uses of contextlib
syntax-free “nesting”
e.g., a locked transaction:
with contextlib.nested(thelock,
 Transaction(c)) as (locked, cursor): ...
auto commit or rollback, AND auto
thelock.release, on block exit

when all you need is closing, e.g:
with contextlib.closing(
 urllib.urlopen(...)) as f:
 ...work with pseudo-file object f...
auto f.close() on block exit

24
24

Generator enhancements
yield can be inside a try-clause
yield is now an expression

x = g.send(value) gives yield’s value
x = g.next() is like x = g.send(None)
preferred syntax: value = (yield result)

g.throw(type [,value [,traceback]])
g.close() is like g.throw(GeneratorExit)

automatic g.close() when g is garbage-
collected

this is what ensures try/finally works!

25
25

Absolute/relative imports
from __future__ import absolute_import

means: import X finds X in sys.path
you can import .X to find X in the
current package
also import ..X to find X in the
package containing the current one, etc

important “future” simplification of imports

26
26

try/except/finally
try: <body>
except <spec>: <handler>
else: <ebody> # else-clause is optional
finally: <finalizer>
becomes equivalent to:
try:
 try: <body>
 except <spec>: <handler>
 else: <ebody>
finally: <finalizer>

27
27

if/else ternary operator
result = (whentrue if cond else whenfalse)
becomes equivalent to:
if cond:
 result = whentrue
else:
 result = whenfalse

the parentheses are technically optional (!)
meant to help with lambda & the like
somewhat-controversial syntax...:-)

28
28

Exceptions are new-style
BaseException
 KeyboardInterrupt
 Exception
 GeneratorExit
 StandardError
 ArithmeticError
 EnvironmentError
 LookupError
 # other “true” error classes
 StopIteration
 SystemExit
 Warning
 SystemExit

29
29

any and all
def any(seq):
 for item in seq:
 if item: return True
 return False

def all(seq):
 for item in seq:
 if not item: return False
 return True

note: RIGHT behavior for empty sequence!

30
30

dict.__missing__
hook method called by __setitem__ if the
key is missing (==not in the dict)
default implementation in dict itself:

def __missing__(self, key):
 raise KeyError(key)

meant to be overridden by subclasses
collections.defaultdict subclasses dict:

def __missing__(self, key):
 return self.default_factory()

default_factory optionally set at
__init__ (default None == raise)

31
31

ctypes
load any shared library / DLL with
ctypes.CDLL(<complete name of library>)
call any function as a method of the CDLL
automatically converts to int and char*
other conversions explicit with c_int,
c_float, create_string_buffer, ...
also accesses Python’s C API
essentially: a general-purpose Python FFI !
dangerous: any programer mistake or
oversight can easily crash Python!

32
32

Element-Tree
new package xml.etree with modules
ElementTree, ElementPath, ElementInclude
highly Pythonic in-memory representation
of XML document as tree, much slimmer
(and faster!) than the DOM
each XML element is a bit like a list of its
children merged with a dict of its attrs
scalable to large documents with included C
accelerators and .iterparse incremental
parsing (a bit like pulldom, but simpler, and
keeps subtrees by default)

33
33

functools
functools.partial for “partial
application” (AKA “currying”)
functools.update_wrapper for proper
setting of metadata for functions that wrap
other functions
functools.wraps: decorator equivalent of
functools.update_wrapper

34
34

hashlib
replaces md5 and sha modules (which
become wrappers to it!)
adds SHA-224, SHA-256, SHA-384, SHA-512
optionally uses OpenSSL as accelerator (but
can be pure-Python if necessary!)

35
35

sqlite3
wrapper for the SQLite embedded DB
DB-API-2 compliant interface

except that SQLite is “typeless” (!)
some extensions: optional timeout on
connect, isolation level, detect_type and
type converters, executemany on
iterators, executescript method, ...

great way to “get started” on small app,
can later migrate to PostgreSQL or other
relational DB (MySQL, Oracle, whatever)

36
36

wsgiref
Web Server Gateway Interface
standard “middleware” interface between
HTTP servers and Python web frameworks

goal: any framework, any server
non-goal: direct use by web applications!
already widely supported by frameworks
http://www.wsgi.org/wsgi for more!

stdlib now includes a “reference
implementation” of WSGI (wsgiref)

includes basic HTTP server for debugging
WSGI applications and interfaces

37
37

http://www.wsgi.org/wsgi
http://www.wsgi.org/wsgi

