Better, faster, smarter

Python: yesterday, today... and tomorrow

mailto:aleaxit@gmail.com
mailto:aleaxit@gmail.com

Outline of this talk

@ a short reflection on Python evolution
02.2->23 >24 >
@ ... -> highlights of Python 2.5
@ the “with” statement (RAII)
@ other language changes
@ additions fo the standard library
@ optimizations
2Q & A
@ Qs are also welcome during the talk!-)

1 lang, many versions

@ Jython (pending 2.2/2.3 release)
@ IronPython (1.0, 8/06, Microsoft ~ CPython 2.4)
@ pypy (0.9, 6/06 ~ CPython 2.4, but "beta”)
@ CPython (Classic Python) timeline
@ 2.2: 12/01 (...2.2.3: 5/03) major new stuff
@ 2.3: 7/03 (...2.3.5: 2/05) ~30% faster
@ 2.4: 11/04 (...2.4.4: 9/06) ~5% faster yet
@ 2.5: 9/06 (...?) ~10% (?) faster yet

0 2.2 0 2.2.2
Dec 2001 Oct 2002

2.2

Apr 2002 Mar 2003

(2.2.1 2.2.3

Apr 2002 Oct 2002 Apr 2003 Oct 2003 Apr2004 Oct 2004 Apr2005 Oct 2005 Apr 2006

2.

e 2.3
Jul 2003
o 2.3.1
Sep 2003
e 2.3.2
Oct 2003
e 2.3.3
Dec 2003
e 2.3.4 e 2.3.5
May 2004 Feb 2005
o 2.4

Nov 2004 2.5
2.4 2.4.1 2.4.2 2.4.3

Mar 2005 | Sep 2005 [Mar 2006 [

Apr 2002 Oct 2002 Apr 2003 Oct 2003 Apr2004 Oct 2004 Apr2005 Oct2005 Apr 2006

The 2.2 “revolution”

@ 2.2 was a "backwards-compatible” revolution

@ new-style object model, descriptors,
custom metaclasses...

@ iterators and generators
@ nested scopes
@ int/long merge, new division, bool (2.2.3)

@ standard library: XML/RPC (clients and
servers), IPvé6 support, email, UCS-4, ...

@ nothing THAT big since, plus, new rule:
@ 2.N.* has NO extra features wrt 2.N

2.2 highlights

class Newy(object):
__metac l.gSSE = S

def funmaker(...):
def madefun(...):
return madefun

def genl(item):
yield 1tem

for 1tem 1n 1ter(f, sentinel):

)

2.3: stable evolution

@ no changes to the language “proper”
@ many, MANY optimizations/tweaks/ fixes

@ import-from-ZIP, ever-more-amazing
sort, Karatsuba multiplication, pymalloc,
interned strs gc'able ...

@ builtins: sum, enumerate, extended slices,
enhancements to str, dict, list, file, ...

@ stdlib, many new modules: bz2, csy,
datetime, heapq, itertools, logging, optparse,
platform, sets, tarfile, fextwrap, timeit

@ & many enhancements: socket timeouts, ...

(o r'(/
: 004

2.3 highlights

sys.path.append(‘some.zip’)
sum([x**2 for x 1n xs 1f x%2])
for 1, x 1n enumerate(xs):
print ‘ciao’[::-1]

for 1ine 1n open(fn, ‘U’):

...and MANY new stdlib modules...!

8

2.4: mostly evolution

@ “small” new language features:
@ genexps, decorators
@ many "peephole-level” optimizations

@ builtins: sorted, reversed; enhancements to
sort, str; set becomes built-in

@ stdlib, new modules: collections, cookielib,
decimal, subprocess

@ string.Template, faster bisect & heapq,
operator itemgetfer & attrgetter,
os.urandom, threading.local, ...

2.4 lanquage changes

sum(x**2 for x 1n xs 1f x%2)
like sum([x**2 for x in xs if x%2])
(without actually building the list!)

class Foo(object):

@classmethod

def bar(cls): return cls.__name__
print Foo().bar(), Foo.bar()

emits: Foo Foo

2.4 new built-ins

for 1tem 1n sorted(sequence):
(does not alter sequence in-place!)

for 1tem 1n reversed(sequence):
(does not alter sequence in-place; like...
for 1tem 1n sequencel[::-1]:

...but, more readable!-)

set and frozenzet become built-in types

2.4 built-ins additions

print ‘foo’.center(/, ‘+’)
emits: ++foo++

print ‘foo+bar+baz’.rsplit(‘+’,1)[-1]
emits: baz

print sorted(‘abc d ef g’.split(), key=len)
emits: [‘d’, ‘g’, ‘ef’, ‘abc’]

2.4 new stdlib modules

collections.deque

double-ended queue -- methods: append,
appendleft, extend, extendleft, pop,
popleft, rotate

decimal .Decimal

specified-precision decimal floating point
number, IEEE-754 compliant

subprocess.Popen
spawn and control a sub-process

13

2.4 stdlib additions

list2d.sort(key=operator.i1temgetter(l))
os.urandom(n) -> n crypto-strong byte str

threading.local() -> TLS (attrs bundle)

heapg.nlargest(n, sequence)
also .nsmallest (whole module much faster)

2.5: evolution... plus!

@ several language changes:
@ full support for "RAII”-style programming

@ new "with” statement, new contextlib
module, generator enhancements...

@ absolute/relative imports, unified “try/
except/ finally” statement, “if/else”
operator, exceptions are new-style

@ new builtins: any/all, dict.__missing___

@ new stdlib modules: ctypes, xml.etree,
functools, hashlib, sqlite3, wsgiref, ...

2.5: many optimizations

@ sets/frozensets recoded from scratch

@ many speed-ups to string operations

@ substantial speed-ups in struct

@ new-style exceptions are faster

@ and many minor optimization tweaks
@ smaller and phantom frames in calls
@ re uses Python allocator
@ some constant-folding at compile time
@ fewer system calls during importing
o ..

16

Resource Alloca’rion Is Ini’rializaﬂon

1n 2.4 and earlier, Java-like...:
resource = ...allocate 1t...
try:
...use the resource...
finally:
...free the resource...

1n 2.5, much “slimmer?”...:
with ...allocate 1t... as resource:
...use the resource...

with automatic "freeing” at block exit!

17

Many “with”-ready types

with open(filename) as f:
...work with file f...
auto f.close() on block exit

somelock = threading.Lock()

with somelock:
auto somelock.acquire() on block entry
. ..work guarded by somelock...

auto somelock.release() on block exit

The “with” statement

from __future__ 1import with_statement
with <expr> as var: <with-block>

makes and uses a *context manager*®
_context = <expr>

var = _context.__enter__()

try: <with-block>

except: _context.__exit__(*sys.exc_info())
else: _context.__exit__(None, None, None)

Better than C++: can distinguish exception
exits from normal ones!

19

Your own context mgrs

@ roll-your-own: write a wrapper class
@ usually ___init___ for initialization
@ ___enter___(self) returns useful “var”

o __exit___(self, ext, exy, tbv) performs the
needed termination operations (exit is
"normal” iff args are all None)

@ extremely general
@ slightly clunky/boilerplatey

“with” for transactions

class Transaction(object):
def - _initi(self. ¢): selfaCa=_e
def __enter__(self): return self.c.cursor()
def __exit__(self, ext, exv, tbv):
1f ext 1s None: self.c.commit()
else: self.c.rollback()

with Transaction(connection) as cursor:
cursor.execute(...)
...and more processing as heeded...

Your own context mgrs

@ contextlib module can help in many ways

@ decorator contextlib.contextmanager lets
you write a context mgr as a generator

@ yield the desired result of __enter___

@ within a try/finally or try/except/else
@ re-raise exception in try/except case

@ function contextlib.nested “nests” context
managers without needing special syntax

@ function contextlib.closing(x) just returns x
and calls x.close() at block exit

Transaction w/contextlib

1mport contextlib

@contextlib.contextmanager
def Transaction(c):
cursor = c.cursor()
try: yield cursor
except:
c.rollback()
raise
else:
c.commit()

23

Other uses of contextlib

syntax-free “nesting”

e.g., a locked transaction:

with contextlib.nested(thelock,
Transaction(c)) as (locked, cursor):

auto commit or rollback, AND auto

thelock.release, on block exit

when all you need 1s closing, e.g:
with contextlib.closing(
urllib.urlopen(...)) as f:
...work with pseudo-file object f...
auto f.close() on block exit

24

Generator enhancements

@ Yield can be inside a try-clause
@ yield is now an expression

@ x = g.send(value) gives yields value

@ x = g.next() is like x = g.send(None)

o preferred syntax: value = (yield result)
@ g.throw(type [,value [,traceback]])

@ g.close() is like g.throw(GeneratorExit)

@ automatic g.close() when g is garbage-
collected

@ this is what ensures try/finally works!

25

Absolute/relative imports

o from __future__ 1mport absolute_import

@ means: 1mport X finds X in sys.path
@ you can 1mport .X to find X in the
current package

@ also 1mport ..X to find X in the
package containing the current one, efc

@ important “future” simplification of imports

try/except/ finally

try: <body>

except <spec>: <handler>

else: <ebody> # else-clause 1s optional
finally: <finalizer>

becomes equivalent fo:
try:
try: <body>
except <spec>: <handler>

else: <ebody>
finally: <finalizer>

27

if /else ternary operator

result = (whentrue 1f cond else whenfalse)

becomes equivalent fo:

1f cond:
result

else:
result = whenfalse

whentrue

@ the parentheses are technically optional (!)
@ meant o help with lambda & the like
@ somewhat-controversial syntax...:-)

Exceptions are new-style

BaseException
KeyboardInterrupt
Exception

GeneratorExit
StandardError
ArithmeticError
EnvironmentError
LookupError
other “true” error classes
StopIteration
SystemExit
Warning
SystemExit

any and all

def any(seq):
for 1tem 1n seq:
1f 1tem: return True
return False

def all(seq):
for 1tem 1n seq:
1f not i1tem: return False
return True

note: RIGHT behavior for empty sequence!

30

dict.__missing___

@ hook method called by __setfitem___ if the
key is missing (==not in the dict)

@ default implementation in dict itself:
def __missing__(self, key):

raise KeyError(key)
@ meant to be overridden by subclasses

@ collections.defaultdict subclasses dict:
def __missing__(self, key):
return self.default_factory()

@ default_factory optionally set at
__init__ (default None == raise)

31

ctypes

@ load any shared library / DLL with
ctypes.CDLL(<complete name of library>)

@ call any function as a method of the CDLL
@ automatically converts to int and char*

@ other conversions explicit with c_inft,
c_float, create_string_buffer, ...

@ also accesses Pythons C API
@ essentially: a general-purpose Python FFI !
@ dangerous: any programer mistake or

oversight can easily crash Python!

Element-Tree

@ new package xml.etree with modules
ElementTree, ElementPath, ElementInclude

@ highly Pythonic in-memory representation
of XML document as tree, much slimmer
(and faster!) than the DOM

@ each XML element is a bit like a list of its
children merged with a dict of its attrs

@ scalable to large documents with included C
accelerators and .iterparse incremental
parsing (a bit like pulldom, but simpler, and
keeps subtrees by default)

33

functools

@ functools.partial for “partial
application” (AKA “currying”)
@ functools.update_wrapper for proper

setting of metadata for functions that wrap
other functions

@ functools.wraps: decorator equivalent of
functools.update_wrapper

hashlib

@ replaces md5 and sha modules (which
become wrappers to it!)

® adds SHA-224, SHA-256, SHA-384, SHA-512

@ optionally uses OpenSSL as accelerator (but
can be pure-Python if necessary!)

sqlite3

@ wrapper for the SQLite embedded DB
@ DB-API-2 compliant interface
@ except that SQLite is "typeless” (!)

@ some extensions: optional timeout on
connect, isolation level, detect_type and
type converters, executemany on
iterators, executescript method, ...

@ great way to “get started” on small app,
can later migrate to PostgreSQL or other
relational DB (MySQL, Oracle, whatever)

wsqgiref

@ Web Server Gateway Interface

@ standard "middleware” interface between
HTTP servers and Python web frameworks

@ goal: any framework, any server

@ non-goal: direct use by web applications!
@ already widely supported by frameworks
@ http://www.wsgi.org/wsgi for more!

@ stdlib now includes a “reference
implementation” of WSGI (wsgiref)

@ includes basic HTTP server for debugging
WSGI applications and interfaces ,

3%

http://www.wsgi.org/wsgi
http://www.wsgi.org/wsgi

