|
Size: 591
Comment:
|
Size: 2479
Comment:
|
| Deletions are marked like this. | Additions are marked like this. |
| Line 8: | Line 8: |
| == 欧几里得算法 == | |
| Line 20: | Line 21: |
| r=m%n if r==0:return m/n return f(n,r) |
m,n=max(m,n),min(m,n) if n==0:return m return f(n,m%n) |
| Line 25: | Line 26: |
== Stein算法 == {{{ 欧几里德算法是计算两个数最大公约数的传统算法,无论是理论,还是从效率上都是很好的。但是他有一个致命的缺陷,这个缺陷只有在很大的素数时才会显现出来。 考虑现在的硬件平台,一般整数最多也就是64位, 对于这样的整数,计算两个数值就的模很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过64位的整数的模,用户也许不得不采用类似于多位除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。 Stein算法由J.Stein 1961年提出,这个方法也是计算两个数的最大公约数。和欧几里德算法不同的是,Stein算法只有整数的移位和加减法,这对于程序设计者是一个福音。 为了说明Stein算法的正确性,首先必须注意到以下结论: gcd(a, a) = a, 也就是一个数和他自己的公约数是其自身。 gcd(ka, kb) = k * gcd(a, b),也就是最大公约数运算和倍乘运算可以交换,特殊的,当k=2时,说明两个偶数的最大公约数比如能被2整除。 }}} 代码: {{{#!python def f(a, b): a,b = max(a,b),min(a,b) if (b == 0): return a if a % 2 == 0 and b % 2 == 0: return 2 * f(a/2, b/2) if a % 2 == 0: return f(a / 2, b) if b % 2 == 0: return f(a, b / 2) return f((a + b) / 2, (a - b) / 2) }}} |
用Python实现常见算法 -- ["qingfeng"] (Date(2009-04-21T16:35:01Z)) TableOfContents
求最大公约数
欧几里得算法
分析:求最大公约数的算法思想: (1) 对于已知两数m,n,使得m>n; (2) m除以n得余数r; (3) 若r=0,则n为求得的最大公约数,算法结束;否则执行(4); (4) m←n,n←r,再重复执行(2)。 例如: 求 m=14 ,n=6 的最大公约数. m n r
代码:
Stein算法
欧几里德算法是计算两个数最大公约数的传统算法,无论是理论,还是从效率上都是很好的。但是他有一个致命的缺陷,这个缺陷只有在很大的素数时才会显现出来。 考虑现在的硬件平台,一般整数最多也就是64位, 对于这样的整数,计算两个数值就的模很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过64位的整数的模,用户也许不得不采用类似于多位除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。 Stein算法由J.Stein 1961年提出,这个方法也是计算两个数的最大公约数。和欧几里德算法不同的是,Stein算法只有整数的移位和加减法,这对于程序设计者是一个福音。 为了说明Stein算法的正确性,首先必须注意到以下结论: gcd(a, a) = a, 也就是一个数和他自己的公约数是其自身。 gcd(ka, kb) = k * gcd(a, b),也就是最大公约数运算和倍乘运算可以交换,特殊的,当k=2时,说明两个偶数的最大公约数比如能被2整除。
代码:
