## page was renamed from zhPyCookbookTemplate ##language:zh ::-- JinQing [<>] <
><
> 21.2. Strategies for Parsing Text in Python <
><
> 21.2. 用Python解析文本的策略 <
><
> In the grand scheme of things, there are a variety of ways to handle text processing in Python: <
><
> 从整体看,Python处理文本有多种方式: <
><
> * Built-in string object expressions * 内置的字符串对象表达式 * String object method calls * 字符串对象方法调用 * Regular expression matching * 正则表达式匹配 * Parser-generator integrations * 解析器生成器集成 * Handcoded and generated parsers * 手工编码的和自动生成的解析器 * Running Python code with eval and exec built-ins * 用内置的eval和exec运行Python代码 <
><
> For simpler tasks, Python's built-in string object is often all we really need. Python strings can be indexed, concatenated, sliced, and processed with both string method calls and built-in functions. Our emphasis in this chapter, though, is on higher-level tools and techniques for analyzing textual information. Let's briefly explore each of the other approaches with representative examples. <
><
> 对于较简单的任务,我们往往只需Python内置的字符串对象。 Python的字符串可以进行索引、拼接、切片,并且可用字符串方法和内置函数进行处理。然而,本章的重点是,分析文本信息的高级工具和技术。让我们以代表性的例子,简要地探索各种方法。 <
><
> = 评译 =