| 
  
   Size: 1420 
  
  Comment:  
 | 
  
   Size: 5610 
  
  Comment:  
 | 
| Deletions are marked like this. | Additions are marked like this. | 
| Line 8: | Line 8: | 
| ##startInc | |
| Line 18: | Line 19: | 
|  从以下对比得出:: * (a)random.random()函数比random.randrange()函数快。 * (b)xrange不一定比range快。 * (c)使用StringIO缓存全部内容,一下子写也不一定快。 * (d)write() 块写效率会提高。 * (e)print 到文件句柄 写效率也不错高 * (f)脚本越短,引用的模块越少效率好 ZoomQuiet 测试环境: * HP 520 笔记本电脑 (GQ349AA) * 英特尔® 酷睿™ 双核处理器 T2300E 1.66GHz , 2MB 二级高速缓存, 667MHz FSB * 内存 2Gb  | 
|
| Line 21: | Line 35: | 
| === random.pl === | === 5" random.pl === | 
| Line 35: | Line 49: | 
| === random.py === | === 31" random.py === | 
| Line 58: | Line 72: | 
| attachment:vs-0.1.png === random0.2.py === {{{#!python }}} ##startInc  | 
attachment:vs-0.2.png === 48" random0.2.py === {{{#!python import cStringIO as StringIO import random import time __revision__ = '0.2' def test(): fh = open("test_cjj0.2","w") output = StringIO.StringIO() for i in xrange(5000000): data = random.randrange(1000000,9999999,1) yu = data % 3 print >>output, yu fh.write(output.getvalue()) fh.close() if __name__ == "__main__" : test() }}} == time vs 0.3 == attachment:vs-0.3.png === 33" random0.3.py === {{{#!python import random import time __revision__ = '0.3' def test(): exp = "" for i in xrange(5000000): data = random.randrange(1000000,9999999,1) exp += "%s\n"%(str(data % 3)) open("test_cjj0.3","w").write(exp) if __name__ == "__main__" : test() }}} == time vs 0.4 == attachment:vs-0.4.png === 27" random0.4.py === {{{#!python import random __revision__ = '0.4' fn = open("test_cjj0.4","w") for i in xrange(5000000): data = random.randrange(1000000,9999999,1) print >> fn, (data % 3) }}} == time vs 0.5 == attachment:vs-0.5.png === 51" random0.5.py === {{{#!python import cStringIO as StringIO import random __revision__ = '0.5' #fn = open("test_cjj0.4","w") out = StringIO.StringIO() for i in xrange(5000000): data = random.randrange(1000000,9999999,1) print >> out, (data % 3) open("test_cjj0.5","w").write(out.getvalue()) }}} == time vs 0.6 == attachment:vs-0.6.png === 26" random0.6.py === {{{#!python import random __revision__ = '0.6' fn = open("test_cjj0.6","w") for i in xrange(5000000): print >> fn, (random.randrange(1000000,9999999,1))% 3 }}} == time vs 0.7 == attachment:vs-0.7.png === 10" random0.7.py === {{{#!python from random import random __revision__ = '0.7' fh = open("test_cjj0.7","w") for i in range(5000000): print >> fh,(int(random()*(9999999-1000000)+1000000))% 3 }}} == time vs 0.8 == attachment:vs-0.8.png === 5" random0.8.py === {{{#!python from random import random __revision__ = '0.8' def test(): fh = open("test_cjj0.8","w") for i in range(5000000): print >> fh,(int(random()*(9999999-1000000)+1000000))% 3 if __name__ == "__main__" : try: import psyco psyco.full() except ImportError: pass test() }}} == time vs 0.9 == attachment:vs-0.9.png * 使用 pysco 前后的差异 === 15~11" random0.9.py === {{{#!python from random import random __revision__ = '0.9' def test(): five_million = 5000000 fh = open("test_cjj0.9","w") for i in xrange(five_million): data = int(random()*(9999999)) yu = data % 3 fh.write('%d\n' % yu) fh.close() if __name__ == "__main__" : try: import psyco psyco.full() except ImportError: pass test() }}} == time vs 1.0 == attachment:vs-1.0.png * 是否打开 pysco 的对比 * 使用迭代后,进行 pysco 加速反而无益 === 9~10" random1.0.py === {{{#!pythonfrom random import random __revision__ = '1.0' def gen_yu(): for i in xrange(5000000): data = int(random()*(9999999)) yu = data % 3 yield yu def test(): fh = open("test_cjj1.0","w") content = '\n'.join([str(m) for m in gen_yu()]) fh.write(content) fh.close() if __name__ == "__main__" : #''' try: import psyco psyco.full() except ImportError: pass #''' test() }}}  | 
Py vs Perl 运行
{{{俊杰蔡 <[email protected]> reply-to [email protected], to [email protected], date Thu, Apr 3, 2008 at 5:50 PM subject [CPyUG:45860] }}} [http://groups.google.com/group/python-cn/browse_thread/thread/4e4eb6d67a867c21/8b346859a4c96e29#8b346859a4c96e29 一段python程序的效率问题]
- 从以下对比得出
 - (a)random.random()函数比random.randrange()函数快。
 - (b)xrange不一定比range快。
 - (c)使用StringIO缓存全部内容,一下子写也不一定快。
 - (d)write() 块写效率会提高。
 - (e)print 到文件句柄 写效率也不错高
 - (f)脚本越短,引用的模块越少效率好
 
ZoomQuiet 测试环境:
- HP 520 笔记本电脑 (GQ349AA)
 - 英特尔® 酷睿™ 双核处理器 T2300E 1.66GHz , 2MB 二级高速缓存, 667MHz FSB
 - 内存 2Gb
 
time vs 0.1
attachment:vs-0.1.png
5" random.pl
use strict;
open (WW,"> 500000") or die "$!";
foreach(1..5000000){
my $i = int(rand 10000000) % 3;
print WW $i."\n";
}
close WW; 
31" random.py
time vs 0.2
attachment:vs-0.2.png
48" random0.2.py
   1 import cStringIO as StringIO
   2 
   3 import random
   4 import time
   5 
   6 __revision__ = '0.2'
   7 
   8 def test():
   9     fh = open("test_cjj0.2","w")
  10     output = StringIO.StringIO()
  11   
  12     for i in xrange(5000000):
  13 
  14         data = random.randrange(1000000,9999999,1)
  15         yu = data % 3
  16         print >>output, yu                                          
  17    
  18     fh.write(output.getvalue())
  19 
  20     fh.close()
  21 
  22 if __name__ == "__main__" :
  23     test()
time vs 0.3
attachment:vs-0.3.png
33" random0.3.py
time vs 0.4
attachment:vs-0.4.png
27" random0.4.py
time vs 0.5
attachment:vs-0.5.png
51" random0.5.py
time vs 0.6
attachment:vs-0.6.png
26" random0.6.py
time vs 0.7
attachment:vs-0.7.png
10" random0.7.py
time vs 0.8
attachment:vs-0.8.png
5" random0.8.py
time vs 0.9
attachment:vs-0.9.png
- 使用 pysco 前后的差异
 
15~11" random0.9.py
   1 from random import random
   2 __revision__ = '0.9'
   3 
   4 def test():
   5    five_million = 5000000
   6    fh = open("test_cjj0.9","w")
   7    for i in xrange(five_million):
   8        data = int(random()*(9999999))
   9        yu = data % 3
  10        fh.write('%d\n' % yu)
  11    fh.close()
  12 
  13 if __name__ == "__main__" :
  14     try:
  15         import psyco
  16         psyco.full()
  17     except ImportError:
  18         pass
  19     test()
time vs 1.0
attachment:vs-1.0.png
- 是否打开 pysco 的对比
 - 使用迭代后,进行 pysco 加速反而无益
 
9~10" random1.0.py
__revision__ = '1.0'
def gen_yu():
   for i in xrange(5000000):
       data = int(random()*(9999999))
       yu = data % 3
       yield yu
def test():
   fh = open("test_cjj1.0","w")
   content = '\n'.join([str(m) for m in gen_yu()])
   fh.write(content)
   fh.close()
if __name__ == "__main__" :
    #'''
    try:
        import psyco
        psyco.full()
    except ImportError:
        pass
    #'''
    test()反馈
创建 by -- ZoomQuiet [DateTime(2008-04-03T13:26:48Z)]
