|
Size: 158
Comment:
|
Size: 4323
Comment:
|
| Deletions are marked like this. | Additions are marked like this. |
| Line 9: | Line 9: |
| === 简介 === 是 Mathomatic 不是 Mathematica , 公元2005年7月30日, 在更新 cygwin 的时候偶然发现的. Mathematica 是一个轻便的通用计算机代数系统 CAS (Computer Algebra System), 它是用C写成的, 使用 GNU LGPL license. === 官方页面 === [http://mathomatic.orgserve.de/math/] === 文档 === === 例子 === ==== 一些简单的例子 ==== {{{ Mathomatic Version 12.3.2 (www.mathomatic.com) Copyright (C) 1987-2005 George Gesslein II. 40 equation spaces allocated (total size is 9600 KBytes). 1-> ; Simplification tests. 1-> 1-> clear all 1-> t=2*(x^2 - y^2)^6 - (x^2 - y^2)^5*(2 x^2 - 3) #1: t = (2*(((x^2) - (y^2))^6)) - ((((x^2) - (y^2))^5)*((2*(x^2)) - 3)) 1-> simplify #1: t = (((y^2) - (x^2))^5)*((2*(y^2)) - 3) 1-> t=a^3/((a-b)*(a-c)) + b^3/((b-c)*(b-a)) + c^3/((c-a)*(c-b)) (a^3) (b^3) (c^3) #2: t = ----------------- + ----------------- + ----------------- ((a - b)*(a - c)) ((b - c)*(b - a)) ((c - a)*(c - b)) 2-> simplify #2: t = a + b + c 2-> t=(x^6+a^6)*(x+1)/((x^6+a^6)*(x^2-a^2)+a^2*x^2*(x^4-a^4))+a^2*x^2*(x+1)/(x^6-a^6-a^2*x^2*(x^2-a^2)) ((x^6) + (a^6))*(x + 1) (a^2)*(x^2)*(x + 1) #3: t = ------------------------------------------------------------------- + ----------------------------------------------- ((((x^6) + (a^6))*((x^2) - (a^2))) + ((a^2)*(x^2)*((x^4) - (a^4)))) ((x^6) - (a^6) - ((a^2)*(x^2)*((x^2) - (a^2)))) 3-> simplify Found polynomial Greatest Common Divisor. Division simplified. Found polynomial Greatest Common Divisor. Division simplified. (x + 1) #3: t = --------------- ((x^2) - (a^2)) 3-> t=((a*n + b*m)^2 + (a*m - b*n)^2) / ((a*p + b*q)^2 + (a*q - b*p)^2) ((((a*n) + (b*m))^2) + (((a*m) - (b*n))^2)) #4: t = ------------------------------------------- ((((a*p) + (b*q))^2) + (((a*q) - (b*p))^2)) 4-> simplify ((n^2) + (m^2)) #4: t = --------------- ((p^2) + (q^2)) 4-> y=((p*x^2+(k-s)*x+r)^2-(p*x^2+(k+s)*x+r)^2)/((p*x^2+(k+t)*x+r)^2-(p*x^2+(k-t)*x+r)^2) ((((p*(x^2)) + ((k - s)*x) + r)^2) - (((p*(x^2)) + ((k + s)*x) + r)^2)) #5: y = ----------------------------------------------------------------------- ((((p*(x^2)) + ((k + t)*x) + r)^2) - (((p*(x^2)) + ((k - t)*x) + r)^2)) 5-> simplify -1*s #5: y = ---- t 5-> t=(1 - (1-(y+1)/(x+y+1)) / (1-x/(x+y+1))) / ((y+1)^2 - x / (1+x/(y-x+1))*(x*(y+1)/(y-x+1) - x)) (y + 1) (1 - -----------) (x + y + 1) (1 - -----------------) x (1 - -----------) (x + y + 1) #6: t = ----------------------------------- x*(y + 1) x*(----------- - x) (y - x + 1) (((y + 1)^2) - -------------------) x (1 + -----------) (y - x + 1) 6-> simplify Found polynomial Greatest Common Divisor. Division simplified. 1 #6: t = ----------------------------------------- (1 + (y^2) + (2*y) + (x*(y + 1)) + (x^2)) 6-> y=((2*((x*(x + (((x^2) - 1)^(1/2)))) - 1)) + 1)/((2*x*((x^2) - 1)) + ((((x^2) - 1)^(1/2))*((2*(x^2)) - 1))) 1 ((2*((x*(x + (((x^2) - 1)^-))) - 1)) + 1) 2 #7: y = ------------------------------------------------------- 1 ((2*x*((x^2) - 1)) + ((((x^2) - 1)^-)*((2*(x^2)) - 1))) 2 7-> simplify 1 #7: y = --------------- 1 (((x^2) - 1)^-) 2 Thank you for using Mathomatic! }}} === 讨论 === * 个人感觉非常好用, 比 ["Maxima"] 简单. |
含有章节索引的中文 文章模板
::-- hoxide [DateTime(2005-07-30T12:36:55Z)] TableOfContents
Mathomatic
简介
- 是 Mathomatic 不是 Mathematica , 公元2005年7月30日, 在更新 cygwin 的时候偶然发现的. Mathematica 是一个轻便的通用计算机代数系统 CAS (Computer Algebra System), 它是用C写成的, 使用 GNU LGPL license.
官方页面
[http://mathomatic.orgserve.de/math/]
文档
例子
一些简单的例子
Mathomatic Version 12.3.2 (www.mathomatic.com)
Copyright (C) 1987-2005 George Gesslein II.
40 equation spaces allocated (total size is 9600 KBytes).
1-> ; Simplification tests.
1->
1-> clear all
1-> t=2*(x^2 - y^2)^6 - (x^2 - y^2)^5*(2 x^2 - 3)
#1: t = (2*(((x^2) - (y^2))^6)) - ((((x^2) - (y^2))^5)*((2*(x^2)) - 3))
1-> simplify
#1: t = (((y^2) - (x^2))^5)*((2*(y^2)) - 3)
1-> t=a^3/((a-b)*(a-c)) + b^3/((b-c)*(b-a)) + c^3/((c-a)*(c-b))
(a^3) (b^3) (c^3)
#2: t = ----------------- + ----------------- + -----------------
((a - b)*(a - c)) ((b - c)*(b - a)) ((c - a)*(c - b))
2-> simplify
#2: t = a + b + c
2-> t=(x^6+a^6)*(x+1)/((x^6+a^6)*(x^2-a^2)+a^2*x^2*(x^4-a^4))+a^2*x^2*(x+1)/(x^6-a^6-a^2*x^2*(x^2-a^2))
((x^6) + (a^6))*(x + 1) (a^2)*(x^2)*(x + 1)
#3: t = ------------------------------------------------------------------- + -----------------------------------------------
((((x^6) + (a^6))*((x^2) - (a^2))) + ((a^2)*(x^2)*((x^4) - (a^4)))) ((x^6) - (a^6) - ((a^2)*(x^2)*((x^2) - (a^2))))
3-> simplify
Found polynomial Greatest Common Divisor. Division simplified.
Found polynomial Greatest Common Divisor. Division simplified.
(x + 1)
#3: t = ---------------
((x^2) - (a^2))
3-> t=((a*n + b*m)^2 + (a*m - b*n)^2) / ((a*p + b*q)^2 + (a*q - b*p)^2)
((((a*n) + (b*m))^2) + (((a*m) - (b*n))^2))
#4: t = -------------------------------------------
((((a*p) + (b*q))^2) + (((a*q) - (b*p))^2))
4-> simplify
((n^2) + (m^2))
#4: t = ---------------
((p^2) + (q^2))
4-> y=((p*x^2+(k-s)*x+r)^2-(p*x^2+(k+s)*x+r)^2)/((p*x^2+(k+t)*x+r)^2-(p*x^2+(k-t)*x+r)^2)
((((p*(x^2)) + ((k - s)*x) + r)^2) - (((p*(x^2)) + ((k + s)*x) + r)^2))
#5: y = -----------------------------------------------------------------------
((((p*(x^2)) + ((k + t)*x) + r)^2) - (((p*(x^2)) + ((k - t)*x) + r)^2))
5-> simplify
-1*s
#5: y = ----
t
5-> t=(1 - (1-(y+1)/(x+y+1)) / (1-x/(x+y+1))) / ((y+1)^2 - x / (1+x/(y-x+1))*(x*(y+1)/(y-x+1) - x))
(y + 1)
(1 - -----------)
(x + y + 1)
(1 - -----------------)
x
(1 - -----------)
(x + y + 1)
#6: t = -----------------------------------
x*(y + 1)
x*(----------- - x)
(y - x + 1)
(((y + 1)^2) - -------------------)
x
(1 + -----------)
(y - x + 1)
6-> simplify
Found polynomial Greatest Common Divisor. Division simplified.
1
#6: t = -----------------------------------------
(1 + (y^2) + (2*y) + (x*(y + 1)) + (x^2))
6-> y=((2*((x*(x + (((x^2) - 1)^(1/2)))) - 1)) + 1)/((2*x*((x^2) - 1)) + ((((x^2) - 1)^(1/2))*((2*(x^2)) - 1)))
1
((2*((x*(x + (((x^2) - 1)^-))) - 1)) + 1)
2
#7: y = -------------------------------------------------------
1
((2*x*((x^2) - 1)) + ((((x^2) - 1)^-)*((2*(x^2)) - 1)))
2
7-> simplify
1
#7: y = ---------------
1
(((x^2) - 1)^-)
2
Thank you for using Mathomatic!
讨论
- 个人感觉非常好用, 比 ["Maxima"] 简单.
